If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-12y+1=0
a = 3; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·3·1
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*3}=\frac{12-2\sqrt{33}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*3}=\frac{12+2\sqrt{33}}{6} $
| (2-x)(1-x)+0.2=0 | | (2-x)(1-x)+0.25=0 | | (2-x)(1-x)+0.4=0 | | (2-x)(1-x)+0.5=0 | | (2-x)(1-x)-0.5=0 | | y/3-1.5=11.5 | | (40x)+15(1.5x)=1000 | | -2x^2-5=-2x | | 2x^2-5=-2x | | 2(q+2)-6=4 | | 2(u+3.39)=9.96 | | X+3x-2x=38 | | x/8+3/4=-1/1 | | -8p=49 | | 4(7+5x)=348 | | 2(-5x+53)=-9x+77 | | 2v^2=50 | | -14=l+6 | | (2-x)(1-x)=0 | | 5p+3-2p=-1 | | 45+20x=35+22x | | 1/8x=-16 | | 150+2x=200+1.5x | | 82+67+x+x=360 | | 82+67+x116+x=360 | | F(x)=7(x) | | -3x+1=91 | | -3y-4=146 | | (y-6)=84 | | (2z-10)=84 | | (-x+9)=96 | | (-x-1)=111 |